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Received 14 October 1996

Abstract. The formalism and the techniques of the supersymmetric (SUSY) quantum
mechanics is generalized to the cases where the superpotential is generated/defined by higher
excited eigenstates. The generalization is technically almost straightforward but physically quite
non-trivial since it yields an infinity of new classes of SUSY-partner potentials, whose spectra
are exactly identical except for the lowest(m+1) states, if the superpotential is defined in terms
of the (m+ 1) eigenfunction, withm = 0 reserved for the ground state. It is shown that in case
of the infinite one-dimensional (1D) potential well nothing new emerges (the partner potential
is still of Pöschl–Teller type I, for allm), whilst in case of the 1D harmonic oscillator we get
a new class of infinitely many partner potentials: for eachm the partner potential is expressed
as the sum of the quadratic harmonic potential plus rational function, defined as the derivative
of the ratio of two consecutive Hermite polynomials. These partner potentials of course have
m singularities exactly at the locations of the nodes of the generating(m + 1) wavefunction.
The SUSY formalism applies everywhere between the singularities. A systematic application
of the formalism to other potentials with known spectra would yield an infinitely rich class of
‘solvable’ potentials, in terms of their partner potentials. If the potentials are shape invariant they
can be solved at least partially and new types of analytically obtainable spectra are expected.

1. Introduction

After the classical papers of Witten (1981) and Gendenshtein (1983) the methods of
supersymmetric (SUSY) (non-relativistic) quantum mechanics have quickly developed and
it has been realized that: (1) there exist partner potentials with precisely the same energy
spectra except for the ground state (m = 0) (whose wavefunctionφ(x) = ψ0(x) is used
to generate/define the superpotentialW(x), see below)‡, and that (2) if they are‘shape
invariant’ their spectra and wavefunctions can be exactly and analytically solved. It is
believed that the list of such shape invariant partner potentials is now complete and finite
(Lévai 1989, Barclayet al 1993), and therefore quite limited in use. The research has been
later further developed also in the direction of applying the WKB methods to such classes
of Hamiltonians, including the search for improved simple quantization conditions which
would be exact in the case of SUSY shape-invariant potentials (Barclayet al 1993, Barclay
and Maxwell 1991, Barclay 1993, Inomataet al 1993, Junker 1995, Robnik and Salasnich
1996), and also in the direction of exploring the applicability of the path integral techniques
(Inomata and Junker 1993, 1994). One of the nicest presentations of SUSY quantum

† E-mail address: robnik@uni-mb.si
‡ The ground-state energyE(−)0 is missing in the partner HamiltonianH+, so that its groundstateE(+)0 = E(−)1 .
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mechanics was published by Dutt, Khare and Sukhatme (1988), henceforth referred to as
DKS. We will use their notation. It should be mentioned at this point that the ideas involved
behind the SUSY property and shape invariance were formulated first by Infeld and Hull
(1951), where they were called the ‘factorization method’, and these authors refer further
to the related ideas in the works of Schrödinger (1940, 1941).

2. Generalized supersymmetric formalism

The main point of this short paper is to point out that the whole formalism of the
SUSY quantum mechanics can be generalized to arbitrary higher excited eigenstates
φ(x) = ψm(x),m = 0, 1, 2, . . . , used to generate the superpotentialW(x), namely

W(x) = − h̄√
2µ

φ′

φ
(1)

whereφ′(x) = dφ/dx, µ is the mass of the particle moving in theV− potential, 2πh̄ is
the Planck constant andm is the quantum number equal to the number of nodes of the
eigenfunctionsψm(x) of the starting potentialV−(x). The energy scale is adjusted so that
the (m+1) energy eigenvalue is exactly zero,E(−)m = 0. The corresponding Hamiltonian is

H− = − h̄
2

2µ

d2

dx2
+ V−(x)

and the Schr̈odinger equation reads

H−ψ(−)
m = H−φ =

(
− h̄

2

2µ

d2

dx2
+ V−(x)

)
φ = 0. (2)

Obviously, becauseφ′(x) 6= 0 at the nodesyj , the superpotentialW(x) will have singularities
at the nodesyj , j = 1, 2, . . . , m, of φ. However, this does not invalidate our derivation,
but it merely means, as will become clear later, that the partner potential generated byφ

diverges to+∞ whenx → yj , for anyj = 1, 2, . . . , m. This implies that the potential wells
are well defined between two consecutive singularities and that they do not communicate
with solutions in the neighbouring wells. Thus, ifm = 0, we have the common case of
usual SUSY potentials defined on(−∞,+∞), if m = 1 we have two separated potential
wells, each of them on a semiinfinite domain, form = 2 we have one infinite potential
well on a finite domain between two nodesy1 andy2, and two binding potential wells on
the two seminfinite domains(−∞, y1] and [y2,+∞), and so on. The (partner) potentials
constructed in this way are non-trivial and certainly very interesting since they contribute to
our list of solvable potentials which now becomes truly very rich and infinite in its contents.

In order to make this paper self-contained I will build up the formalism necessary to
construct the partner potentials and to define the shape invariance, following DKS, in order
to demonstrate that the SUSY formalism does not break down anywhere on its domain of
definition, and to define the language needed to talk about further results that I shall present
in this contribution.

First, we express the starting potentialV−(x) in terms of the(m + 1)st eigenfunction
φ(x) = ψm(x), by solving (2)

V−(x) = h̄2

2µ

φ′′

φ
(3)
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which is regular everywhere, because at the nodesyj the second derivativeφ′′(x) = d2φ/dx2

also vanishes withφ. Thus, the basic HamiltonianH− reads

H− = h̄2

2µ

(
− d2

dx2
+ φ

′′

φ

)
. (4)

The two important operators are

A+ = h̄√
2µ

(
− d

dx
− φ

′

φ

)
(5)

and

A = h̄√
2µ

(
d

dx
− φ

′

φ

)
(6)

which gives

H− = A+A. (7)

We further define the partner HamiltonianH+ and the partner potentialV+ as

H+ = AA+ = − h̄
2

2µ

d2

dx2
+ V+(x) (8)

where

V+(x) = V−(x)− h̄
2

µ

d

dx

(
φ′

φ

)
(9)

or

V+(x) = −V−(x)+ h̄
2

µ

(
φ′

φ

)2

. (10)

The potentialsV+ andV− are calledSUSY-m partner potentials. We will show that they
have the same energy levels, except for the(m + 1) lowest states ofV− for which there
are no corresponding states ofV+, so that the ground state of the latter isE(+)0 = E(−)m+1.
All higher states then have identical energies. From equation (10) we see explicitly that at
every nodeyj , j = 1, 2, . . . , m, of the defining eigenstateφ = ψ(−)

m the partner potential(s)
will have a singularity of the type 1/(x − yj )2 such thatV+(x)→ +∞ whenx → yj , so
that every branch of the partner potential will be confining up to infinity, and the solutions
in various branches do not communicate. Thus, for eachm we shall find(m+1) (branches
of the) partner potentials.

In terms of the superpotentialW defined in equation (1) we can write

φ(x) = ψ(−)
m (x) = exp

(
−
√

2µ

h̄

∫ x

W(x) dx

)
(11)

which is well defined in the definition domain of any of the branches of the partner potential,
and obviouslyφ will go to zero whereW has the poles 1/(x − yj ), as it should happen.

Some of the relationships can now be rewritten/reformulated in terms of the
superpotentialW(x)

A+ = − h̄√
2µ

d

dx
+W(x)

A = h̄√
2µ

d

dx
+W(x) (12)
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and also, the commutator of the operatorsA andA+ is

V±(x) = W 2(x)± h̄√
2µ
W ′(x) W ′(x) = dW

dx
. (13)

Furthermore, we observe

V+ = V− + 2h̄√
2µ

dW

dx
(14)

and also

[A,A+] = 2h̄√
2µ

dW

dx
. (15)

Now we have all the tools at hand to show that the SUSY partner potentialsV− andV+ are
isospectral except for the lowest(m+ 1) states ofV− which have no counterpart inV+, so
that its ground state isE(+)0 = E(−)m+1.

The demonstration, following DKS, is very easy. First we find that ifψ(−)
n is an

eigenfunction ofH− with the eigenenergyE(−)n , thenAψ(−)
n is an eigenfunction ofH+ with

the same energy:

H+(Aψ(−)
n ) = AA+Aψ(−)

n = AH−ψ(−)
n = AE(−)n ψ(−)

n = E(−)n Aψ(−)
n . (16)

Now we show that this applies only to the eigenstatesn higher thanm, n = m+1, m+2, . . . ,
by considering the normalization condition, by writing the normalized stateψ(+)

n =
CnAψ

(−)
n , and calculating the normalizing coefficientCn,

‖ψ(+)
n ‖ = C2

n〈Aψ(−)
n |Aψ(−)

n 〉 = C2
n〈ψ(−)

n |A+Aψ(−)
n 〉 = C2

nE
(−)
n ‖ψ(−)

n ‖. (17)

If all ψ(−)
n are normalized (they are certainly orthogonal, because we deal with one-

dimensional systems, where degeneracies are forbidden due to the Sturm-Liouville theorem
(Courant and Hilbert 1968) and, therefore, all eigenstates must be orthogonal), then

Cn = 1√
E
(−)
n

(18)

which implies that the construction succeeds iffE(−)n > 0, implying thatn > m. Thus, the
two HamiltoniansH− andH+ defined in (4) and in (8) are isospectral except for the lowest
(m+ 1) eigenstates ofH− which have no counterpart inH+.

Now counting the eigenstates ofH+ from n = 0, 1, 2, . . . , wheren = 0 is the ground
state andn is the number of nodes of the (now also normalized) eigenfunctionψ(+)

n , we
have

ψ(+)
n =

1√
E
(−)
m+1+n

Aψ
(−)
m+1+n E(+)n = E(−)m+1+n. (19)

Of course it is easy to show that, conversely, for every eigenstateψ(+)
n of H+ there exists

the normalized eigenstate ofH−, namely

ψ
(−)
m+1+n =

1√
E
(+)
n

A+ψ(+)
n n = 0, 1, 2, . . . . (20)

This completes our proof of isospectrality, generalized to the case that the generating
functionφ of the superpotentialW , defined in equation (1), is a higher excited wavefunction,
namelyφ = ψ(−)

m , m = 0, 1, 2, . . . . As we have seen, the formalism of superpotential and
of the partner potentials works everywhere except at the singularities located at the nodal
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pointsyi of φ, where the partner potentialV+ goes to infinity as 1/(x−yi)2, thereby defining
several branches ofV+ well defined on their disjoint domains of definition.

We have demonstrated that if one of the partner systems (the Hamiltonians) can be
solved completely (by calculating the energy levels and the eigenfunctions), then the SUSY
formalism enables one to solve the partner problem completely, following equation (19).
One of the most important cases is, of course, the harmonic oscillator, which we will discuss
in detail below.

If the solutions for the two partner Hamiltonians are both unknown, then another
approach is necessary to solve them. In the case of the standard SUSY formalism with
m = 0 we have the important class of the shape invariant potentials. As is well known
(DKS) the shape invariance of the two partner potentialsV− andV+ is defined by

V+(x; a0) = V−(x; a1)+ R(a1) (21)

wherea0 is a set of parameters,a1 = f (a0) andR(a1) is independent ofx. The procedure
is now (essentially embodied in the factorization method of Infeld and Hull (1951)) the
following. Consider a series of HamiltoniansH(s), s = 0, 1, 2, . . . , whereH(0) = H− and
H(1) = H+, by definition

H(s) = − h̄
2

2µ

d2

dx2
+ V−(x; as)+

s∑
k=1

R(ak) (22)

where

as = f s(a0) = f ◦ · · · ◦ f︸ ︷︷ ︸
s

(a0). (23)

Now compare the spectra ofH(s) with H(s+1), and find

H(s+1) = − h̄
2

2µ
+ V−(x; as+1)+

s+1∑
k=1

R(ak)

H (s+1) = − h̄
2

2µ
+ V+(x; as)+

s∑
k=1

R(ak). (24)

Thus it is obvious thatH(s) andH(s+1) are SUSY partner Hamiltonians, and they have the
same spectra from the first level upwards except for the ground state ofH(s) whose energy
is

E
(s)

0 =
s∑
k=1

R(ak). (25)

When going back froms to (s−1) we reachH(1) = H+ andH(0) = H−, whose ground-state
energy is zero and itsnth energy level is coincident with the ground state of the Hamiltonian
H(n), n = 1, 2, . . . . Therefore, the complete spectrum ofH− is

E(−)n =
n∑
k=1

R(ak) E
(−)
0 = 0. (26)

The generalization of shape invariance to the case of anym > 0 is straightforward, but it
results in higher complexity and, therefore, it is more rarely satisfied by the specific systems.
By repeating the above arguments we reach the conclusion that, when (21) is satisfied for a
superpotentialW with givenm, then we cannot calculate the entire spectrum of the shape
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invariant potential/HamiltonianH−, but only the subset (subsequence) of periodm + 1,
namely

E
(−)
m+n(m+1) =

n∑
k=1

R(ak) E(−)m = 0, n = 1, 2, . . . . (27)

In the special casem = 0 we, of course, recover the formula (26). Form > 0 we haveno
exampleof SUSY-m shape invariance so far.

3. The example of the harmonic oscillator

Let us consider a few examples of SUSY-m partner potentials. First, consider the harmonic
oscillator, defined by

V−(x) = 1
2µω

2x2− (m+ 1
2)h̄ω (28)

shifted in energy so that

E(−)m = 0. (29)

Introducing the natural unit of lengthα we can write the ground-state wavefunction as

ψ0(x) = 1

π1/4α1/2
exp

(
− x2

2α2

)
α =

√
h̄

µω
. (30)

Defining the creation operatora+,

a+ = 1√
2

(
−α d

dx
+ x
α

)
(31)

we can write down all the eigenfunctions, in particular the(m+ 1) one, labelled bym and
denoted byφ, as follows

ψ−m (x) =
(a+)m√
m!

ψ0(x) = φ(x). (32)

Now we calculate the superpotential according to equation (1), by using the following
operator when calculatingφ′ = dφ/dx, obtained from equation (31),

d

dx
= 1

α

(
x

α
−
√

2a+
)

(33)

and find

W(x) = − h̄

α
√

2µ

(
x

α
−
√

2(m+ 1)
ψm+1(x)

ψm(x)

)
. (34)

Using the explicit solution forψm(x), namely

ψm(x) =
(

1

2mm!

√
1

πα2

)1/2

Hm

(
x

α

)
exp

(
− x2

2α2

)
(35)

whereHm(z) is the Hermite polynomial (Abramowitz and Stegun 1965), we obtain

ψm+1(x)

ψm(x)
= 1√

2(m+ 1)

Hm+1(x/α)

Hm(x/α)
(36)

and hence

W(x) = − h̄

α
√

2µ

(
x

α
− Hm+1(x/α)

Hm(x/α)

)
. (37)
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From this and equation (14) we get finally the SUSY-m partner potential of the harmonic
potential (28), namely

V+(x) = 1

2
µω2x2−

(
m+ 3

2

)
h̄ω + h̄ω d

dz

(
Hm+1(z)

Hm(z)

)
z=x/α

(38)

whose energy levels are the same as for the (energy shifted) harmonic oscillator, namely

E(+)n = (n+ 1)h̄ω n = 0, 1, 2, . . . . (39)

so that the ground-state energyE(+)0 = h̄ω, which is equal to the(m + 1) energy level of
(28).

This result is important, because form > 0 it yields new interesting potentials with
purely discrete spectrum, isospectral to the harmonic oscillator, except for the lowest(m+1)
eigenstates. Let us look just at the few lowest cases.

m = 0 V+(x) = 1

2
µω2x2+ 1

2
h̄ω

m = 1 V+(x) = 1

2
µω2x2− 1

2
h̄ω + h̄ωα

2

x2

m = 2 V+(x) = 1

2
µω2x2− 3

2
h̄ω + 4h̄ω

(
1

2z2− 1
+ 2

(2z2− 1)2

)
z = x

α

m = 3 V+(x) = 1

2
µω2x2− 5

2
h̄ω + 3h̄ω

z2

(
1+ 6

2z2− 3
+ 12

(2z2− 3)2

)
z = x

α
.

(40)

The casem = 0 is the usual SUSY-0 case showing just that the 1D harmonic oscillator
potential is indeed SUSY-0 shape invariant. However,m = 1 gives a new example, which
nevertheless is well known as the radial problem of the three-dimensional harmonic potential,
which is thus the SUSY-1 partner potential of the 1D harmonic oscillator potential. It has
only one singularity atx = 0. Next, form = 2 in the above list, we see the first new
non-trivial example, of a specific rational potential which is the SUSY-2 partner potential
of the 1D harmonic potential. It has singularities at the two nodesx = y1 = −α/

√
2 and

x = y2 = +α/
√

2 of the type 1/(x−yj )2. Therefore it has three branches (ranges), namely
(−∞, y1], [y1, y2] and [y2,+∞). The spectrum is identical in each of them. Furthermore,
in casem = 3, we have three singularities at the nodes wherex is equal toy1 = −α

√
3/2,

y2 = 0 andy3 = −y1 = +α
√

3/2, and thus we have two independent different potentials
within the two ranges [y2, y3] and [y3,+∞). (The other two ranges confine the potentials
which are equivalent due to the evenness ofV+(x).)

For higherm we obtain new classes of interesting rational potentials, all of them being
isospectral to the harmonic oscillator except for the lowest(m + 1) eigenstates of the
latter, which are missing in the partner potentials. For eachm we have rational potentials
with (m + 1) branches, defined by them nodesyj , j = 1, . . . , m. Since the Hermite
polynomials Hm(z) are even or odd functions ofz, depending on whetherm is even or odd,
the superpotential(37) is always odd function ofx and, therefore, the SUSY-m partner
potentialV+(x) in equation (38) is always an even function ofx with m singularities.

Asymptotically when|x| → ∞ the potential still behaves as an harmonic quadratic
potential with the leading term1

2µω
2x2, which is true for anym, as can be shown using

the asymptotic properties of the Hermite polynomials, as described below.
The limiting (semiclassical) behaviour of the potentialV+ when h̄ → 0 is interesting.

It implies that z = x/α = x
√
µω/h̄ tends to+∞ and, therefore, from the asymptotic
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properties of the Hermite polynomials Hm+1(z)/Hm(z)→ 2z, for z→+∞, we conclude

V+(x) −→ 1
2µω

2x2− (m− 1
2)h̄ω −→ 1

2µω
2x2 whenh̄→ 0. (41)

Thus the semiclassical limiting form of all these potentials is just the harmonic quadratic
potential, meaning that all the rational potentials in (38) all have zero classical limit. From
(38) it is clear that the harmonic oscillator potential isnot SUSY-m shape invariant, except
for m = 0, which is the familiar case of shape invariance (see DKS).

4. Discussion and conclusions

Using the same formalism applied to known solvable potentials for variousm we can
systematically construct the vast class of new potentials which will be isospectral to each
of the known solvable potentials, almost all of them being SUSY-0 shape invariant, and
listed in DKS.

Finally, we can state the result which can be easily verified in a straightforward manner
(we omit the derivation due to the lack of space here), that the Pöschl–Teller type I potential
is the SUSY-m partner potential of the infinite potential wellfor any value ofm > 0. At
present, we do not know any specific cases of SUSY-m shape invariance withm > 0,
and also have no further calculations for SUSY-m partner and solvable potentials, which
remains as a future project.
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