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Abstract. The formalism and the techniques of the supersymmetric (SUSY) quantum
mechanics is generalized to the cases where the superpotential is generated/defined by higher
excited eigenstates. The generalization is technically almost straightforward but physically quite
non-trivial since it yields an infinity of new classes of SUSY-partner potentials, whose spectra
are exactly identical except for the lowest + 1) states, if the superpotential is defined in terms

of the (m + 1) eigenfunction, withn = 0 reserved for the ground state. It is shown that in case
of the infinite one-dimensional (1D) potential well nothing new emerges (the partner potential
is still of Poschl-Teller type |, for allz), whilst in case of the 1D harmonic oscillator we get

a new class of infinitely many partner potentials: for eaclhe partner potential is expressed

as the sum of the quadratic harmonic potential plus rational function, defined as the derivative
of the ratio of two consecutive Hermite polynomials. These partner potentials of course have
m singularities exactly at the locations of the nodes of the generating 1) wavefunction.

The SUSY formalism applies everywhere between the singularities. A systematic application
of the formalism to other potentials with known spectra would yield an infinitely rich class of
‘solvable’ potentials, in terms of their partner potentials. If the potentials are shape invariant they
can be solved at least partially and new types of analytically obtainable spectra are expected.

1. Introduction

After the classical papers of Witten (1981) and Gendenshtein (1983) the methods of
supersymmetric (SUSY) (non-relativistic) quantum mechanics have quickly developed and
it has been realized that: (1) there exist partner potentials with precisely the same energy
spectra except for the ground state £ 0) (whose wavefunctio (x) = yo(x) is used

to generate/define the superpotentiélx), see below), and that (2) if they aréshape
invariant’ their spectra and wavefunctions can be exactly and analytically solved. It is
believed that the list of such shape invariant partner potentials is now complete and finite
(Lévai 1989, Barclagt al 1993), and therefore quite limited in use. The research has been
later further developed also in the direction of applying the WKB methods to such classes
of Hamiltonians, including the search for improved simple quantization conditions which
would be exact in the case of SUSY shape-invariant potentials (Bagtlaly1993, Barclay

and Maxwell 1991, Barclay 1993, Inomaghal 1993, Junker 1995, Robnik and Salasnich
1996), and also in the direction of exploring the applicability of the path integral techniques
(Inomata and Junker 1993, 1994). One of the nicest presentations of SUSY quantum

t E-mail address: robnik@uni-mb.si
i The ground-state energ@é’) is missing in the partner HamiltoniaH_., so that its groundstatEé“ = Ei’).
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mechanics was published by Dutt, Khare and Sukhatme (1988), henceforth referred to as
DKS. We will use their notation. It should be mentioned at this point that the ideas involved
behind the SUSY property and shape invariance were formulated first by Infeld and Hull
(1951), where they were called the ‘factorization method’, and these authors refer further
to the related ideas in the works of Setdinger (1940, 1941).

2. Generalized supersymmetric formalism

The main point of this short paper is to point out that the whole formalism of the
SUSY quantum mechanics can be generalized to arbitrary higher excited eigenstates
ox) =v,(x),m=0,1,2, ..., used to generate the superpotentialx), namely

o

Ve ¢
where¢’(x) = d¢/dx, n is the mass of the particle moving in thé& potential, Zr7% is

the Planck constant and is the quantum number equal to the number of nodes of the

eigenfunctionsy,, (x) of the starting potential_(x). The energy scale is adjusted so that
the (m + 1) energy eigenvalue is exactly ze®|,” = 0. The corresponding Hamiltonian is

W(x) = 1)

P2
= e + V_(x)

and the Schidinger equation reads

72 42

H oy, =H ¢= (
Obviously, becaus¢’(x) # 0 at the nodes;, the superpotentiaV (x) will have singularities
at the nodeyy;, j = 1,2,...,m, of ¢. However, this does not invalidate our derivation,
but it merely means, as will become clear later, that the partner potential generaged by
diverges tot-oo whenx — y;, foranyj = 1, 2,..., m. This implies that the potential wells
are well defined between two consecutive singularities and that they do not communicate
with solutions in the neighbouring wells. Thus,ndf = 0, we have the common case of
usual SUSY potentials defined @n-oo, +00), if m = 1 we have two separated potential
wells, each of them on a semiinfinite domain, fer= 2 we have one infinite potential
well on a finite domain between two nodes and y,, and two binding potential wells on
the two seminfinite domainé—oo, y1] and [yz, +00), and so on. The (partner) potentials
constructed in this way are non-trivial and certainly very interesting since they contribute to
our list of solvable potentials which now becomes truly very rich and infinite in its contents.
In order to make this paper self-contained | will build up the formalism necessary to
construct the partner potentials and to define the shape invariance, following DKS, in order
to demonstrate that the SUSY formalism does not break down anywhere on its domain of
definition, and to define the language needed to talk about further results that | shall present
in this contribution.
First, we express the starting potentlal (x) in terms of the(m + 1)st eigenfunction
¢ (x) = ¥ (x), by solving (2)
T2 41
V_(x) = e

2 b ®)
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which is regular everywhere, because at the nggléise second derivativg” (x) = d?¢ /dx?
also vanishes witlp. Thus, the basic HamiltoniaH_ reads

}—lQ d2 ¢//
Ho= o (a5 ) @
The two important operators are
h d ¢
at= 1 <_ - ) 5
AR T ®)
and
h d 4)/)
A=——(—-—-— 6
V2u (dx ¢ ©)
which gives
H_ = A%A. @)
We further define the partner Hamiltonigh, and the partner potentidl, as
., R
H, =AA =—Z@+V+(X) (8)
where
R’ d (¢
or
]’_l2 7\ 2
Vi = v+ (4. (10)
nw\¢

The potentialsV, and V_ are calledSUSY-m partner potentialsiVe will show that they

have the same energy levels, except for thet 1) lowest states oV_ for which there

are no corresponding states ©f, so that the ground state of the latter§” = E);.

All higher states then have identical energies. From equation (10) we see explicitly that at
every nodey;, j = 1,2,..., m, of the defining eigenstaig = v~ the partner potential(s)

will have a singularity of the type /{x — y;)? such thatV, (x) — +oo whenx — y;, so

that every branch of the partner potential will be confining up to infinity, and the solutions
in various branches do not communicate. Thus, for eacte shall find(m + 1) (branches

of the) partner potentials.

In terms of the superpotentid¥ defined in equation (1) we can write

2 X
p(x) =y x) = exp(—‘/;“ / W(x)dx) (11)

which is well defined in the definition domain of any of the branches of the partner potential,
and obviouslyg will go to zero whereW has the poles Ax — y;), as it should happen.

Some of the relationships can now be rewritten/reformulated in terms of the
superpotentialV (x)

A=
2 dx
R od
A= g TV (12)
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and also, the commutator of the operatdrand A* is

Vi(x) = W(x) + Lw’(x) W (x) = aw (13)
S 20 oy
Furthermore, we observe
2h dw
Vi=V_+ "7 14
f + o de (14)
and also
2n dw
A AT = ———. 15
(4,47 = T (15)

Now we have all the tools at hand to show that the SUSY partner potehtiaded V., are
isospectral except for the lowegt + 1) states ofV_ which have no counterpart ivi,, so
that its ground state igS"” = E ;.

The demonstration, following DKS, is very easy. First we find that/ff” is an
eigenfunction off_ with the eigenenerg¥ (™), thenAy,{~) is an eigenfunction off, with

the same energy:
H.(AY, ™) = AAT Ay, = AH_y,7 = AET Y, = EV Ay, ™. (16)

Now we show that this applies only to the eigenstateéggher thann, n = m+1, m+2, ...,
by considering the normalization condition, by writing the normalized staf® =
C,Ay!7, and calculating the normalizing coefficie@f,

I PNl = CHAY |AYT)) = C2y T AT Ay = CZED Iy Nl (17)

If all (7 are normalized (they are certainly orthogonal, because we deal with one-
dimensional systems, where degeneracies are forbidden due to the Sturm-Liouville theorem
(Courant and Hilbert 1968) and, therefore, all eigenstates must be orthogonal), then

1

VE

which implies that the construction succeedskff” > 0, implying thatn > m. Thus, the
two HamiltoniansH_ and H, defined in (4) and in (8) are isospectral except for the lowest
(m + 1) eigenstates off_ which have no counterpart iff, .

Now counting the eigenstates &f, fromn =0,1,2,..., wheren = 0 is the ground
state and: is the number of nodes of the (now also normalized) eigenfunatipn, we
have

C, =

(18)

[ (=)
Em+l+n

Of course it is easy to show that, conversely, for every eigengtgteof H, there exists
the normalized eigenstate &f_, namely

- _ 1

IpvalJrn - ®
V E,

This completes our proof of isospectrality, generalized to the case that the generating
function¢ of the superpotentidV, defined in equation (1), is a higher excited wavefunction,
namely¢ = v, m =0,1,2,.... As we have seen, the formalism of superpotential and
of the partner potentials works everywhere except at the singularities located at the nodal

Ayl E(Y = E() (19)

1p(Jr) —
n - m+1+n m+1+n-

Aty n=0,12.... (20)
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pointsy; of ¢, where the partner potenti&l, goes to infinity as A(x —y;)?, thereby defining
several branches df, well defined on their disjoint domains of definition.

We have demonstrated that if one of the partner systems (the Hamiltonians) can be
solved completely (by calculating the energy levels and the eigenfunctions), then the SUSY
formalism enables one to solve the partner problem completely, following equation (19).
One of the most important cases is, of course, the harmonic oscillator, which we will discuss
in detail below.

If the solutions for the two partner Hamiltonians are both unknown, then another
approach is necessary to solve them. In the case of the standard SUSY formalism with
m = 0 we have the important class of the shape invariant potentials. As is well known
(DKS) the shape invariance of the two partner potentialsand V.. is defined by

Vi(x;a0) = V_(x; a1) + R(a1) (21)

whereaqg is a set of parameters; = f(ag) and R(ay) is independent of. The procedure
is now (essentially embodied in the factorization method of Infeld and Hull (1951)) the

following. Consider a series of Hamiltonia#s®, s =0, 1,2, ..., where H©® = H_ and
H® = H_, by definition
©) R & -
HY =—ﬂ@+v—(X;as)+;R(ak) (22)
where
as; = f*(ag) = f oo f(ao). (23)
\—\,_/

N
Now compare the spectra & ¢ with H¢*D, and find

72 s+1

h
HO = —o, T V-(asy) + Y R
128 k=1
Ez s
HOD — —ﬂ + Vi(x;as) + R(ay). (24)
k=1

Thus it is obvious thaH® and H“+Y are SUSY partner Hamiltonians, and they have the
same spectra from the first level upwards except for the ground sta@#é otvhose energy
is

Eg' =" R(a). (25)
k=1

When going back from to (s —1) we reachH® = H, andH® = H_, whose ground-state
energy is zero and itsth energy level is coincident with the ground state of the Hamiltonian

H®™, n=1,2,.... Therefore, the complete spectrum Bf is
ESY =" Rla) ES7 =0. (26)
k=1

The generalization of shape invariance to the case ofmany O is straightforward, but it
results in higher complexity and, therefore, it is more rarely satisfied by the specific systems.
By repeating the above arguments we reach the conclusion that, when (21) is satisfied for a
superpotentiaW with given m, then we cannot calculate the entire spectrum of the shape



1292 M Robnik

invariant potential/Hamiltoniand_, but only the subset (subsequence) of peniod- 1,
namely

ES) i = Z R(ay) EX=0n=12.... (27)

In the special case: = 0 we, of course, recover the formula (26). Fer> 0 we haveno
exampleof SUSYn shape invariance so far.

3. The example of the harmonic oscillator

Let us consider a few examples of SUS¥partner potentials. First, consider the harmonic
oscillator, defined by

V_(x) = %ua)zxz —(m+ %)f_w) (28)
shifted in energy so that
E() =0. (29)
Introducing the natural unit of lengéa we can write the ground-state wavefunction as
1 x? n
Yo(x) = Al exp<—2a2> o= s (30)

Defining the creation operatar",
1 d «x
o Ty T 31
¢ f2( Yar " a) (D

we can write down all the eigenfunctions, in particular the+ 1) one, labelled byn and
denoted byp, as follows

(ah)"
Tl

Now we calculate the superpotential according to equation (1), by using the following
operator when calculating’ = d¢ /dx, obtained from equation (31),

U (X) =

Yo(x) = ¢(x). (32)

d 1/x 4

dx_a<a—f2a ) (33)
and find

Werl(x))
W(x) =— —v2m+1) 34
) af < R e (34)
Using the explicit solution for/,, (x), namely
1 1 \Y2 X x2

100 = (o raz) () 2( - 22) 49
where H,,(z) is the Hermite polynomial (Abramowitz and Stegun 1965), we obtain

Ym+1(x) _ 1 H, 1(x/a) (36)

Y (X) J2m+1) H,(x/a)

and hence

. h x  Hy(x/o)
W= (a H,(x/a) ) (37)
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From this and equation (14) we get finally the SU&Ypartner potential of the harmonic
potential (28), namely

1 3\ _ d/H,.1(2)
v _ T, 2.2 >z ho— | Zmries 38
+(x) SHe"x <m + 2) w+ wdz( H,() ). (38)
whose energy levels are the same as for the (energy shifted) harmonic oscillator, namely
E,(IH =0+ Dho n=012.... (39)

so that the ground-state ener@ﬁ“ = hw, which is equal to thém + 1) energy level of
(28).

This result is important, because far > 0 it yields new interesting potentials with
purely discrete spectrum, isospectral to the harmonic oscillator, except for the lavwes)
eigenstates. Let us look just at the few lowest cases.

1 1_
m=20 Vilx) = é,uwzxz + éha)
2

1 Ve = e — e 4 ”
m = X)= —uwx"— -hw w—
+ oM 2 X2

Lo — St aiof - 2
m=2 V+(x)=élw)x —Zhw+4ha)<222_l+(212_1)2> 7=

1 ,, b5_ Jhw 6 12 X
m=3 V+()C)=él,L(,()x —éha)—'—? 1+222_3+(222_3)2 7= —.

(40)

The casen = 0 is the usual SUSY-0 case showing just that the 1D harmonic oscillator
potential is indeed SUSY-0 shape invariant. Howewer: 1 gives a new example, which
nevertheless is well known as the radial problem of the three-dimensional harmonic potential,
which is thus the SUSY-1 partner potential of the 1D harmonic oscillator potential. It has
only one singularity att = 0. Next, form = 2 in the above list, we see the first new
non-trivial example, of a specific rational potential which is the SUSY-2 partner potential
of the 1D harmonic potential. It has singularities at the two nodes y; = —a/+/2 and

x = yo = +a/+/2 of the type ¥(x — y;)?. Therefore it has three branches (ranges), namely
(=00, y1], [y1, y2] and [y, +00). The spectrum is identical in each of them. Furthermore,
in casem = 3, we have three singularities at the nodes wheig equal toy; = —a+/3/2,

y2 = 0 andys = —y; = +a+/3/2, and thus we have two independent different potentials
within the two rangesyp, ys] and [ys, +00). (The other two ranges confine the potentials
which are equivalent due to the evennesdofx).)

For higherm we obtain new classes of interesting rational potentials, all of them being
isospectral to the harmonic oscillator except for the lowmgst+ 1) eigenstates of the
latter, which are missing in the partner potentials. For eaclve have rational potentials
with (m 4 1) branches, defined by the nodesy;, j = 1,...,m. Since the Hermite
polynomials H,(z) are even or odd functions af depending on whethet is even or odd,
the superpotentia37) is always odd function of and, therefore, the SUS¥- partner
potential V. (x) in equation (38) is always an even functionxofvith m singularities.

Asymptotically when|x| — oo the potential still behaves as an harmonic quadratic
potential with the leading terl’é/w)zxz, which is true for anym, as can be shown using
the asymptotic properties of the Hermite polynomials, as described below.

The limiting (semiclassical) behaviour of the potential when/i — 0 is interesting.

It implies thatz = x/a = x/uw/h tends to+oo and, therefore, from the asymptotic
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properties of the Hermite polynomials,H:(z)/H,.(z) — 2z, for z — +o00, we conclude
Vi(x) — %,ua)zxz —(m — %)i_la) — %szxz wheni — 0. (41)

Thus the semiclassical limiting form of all these potentials is just the harmonic quadratic

potential, meaning that all the rational potentials in (38) all have zero classical limit. From

(38) it is clear that the harmonic oscillator potentiahst SUSY# shape invariant, except

for m = 0, which is the familiar case of shape invariance (see DKS).

4. Discussion and conclusions

Using the same formalism applied to known solvable potentials for vamouse can
systematically construct the vast class of new potentials which will be isospectral to each
of the known solvable potentials, almost all of them being SUSY-0 shape invariant, and
listed in DKS.

Finally, we can state the result which can be easily verified in a straightforward manner
(we omit the derivation due to the lack of space here), that tset—Teller type | potential
is the SUSYm partner potential of the infinite potential wdbr any value ofn > 0. At
present, we do not know any specific cases of SU&¥hape invariance witlm > 0,
and also have no further calculations for SUsYpartner and solvable potentials, which
remains as a future project.
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